MATH20132 Calculus of Several Variables.

Solutions to Problems 4 Fréchet derivatives

Fréchet differentiable scalar-valued functions.

1. a. Prove, by verifying the definition, that the scalar-valued functions
i. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \longmapsto x(x+y)$ and
ii. $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \longmapsto y(x-y)$
are Fréchet differentiable at a general point $\mathbf{a}=(\alpha, \beta)^{T}$ and find the Fréchet derivatives $d f_{\mathbf{a}}$ and $d g_{\mathbf{a}}$.
b. Use your results to check your answers to Question 1 on Sheet 3 .

Solution a. i. With $\mathbf{t}=(s, t)^{T}$ we have

$$
\mathbf{a}+\mathbf{t}=\binom{\alpha+s}{\beta+t}
$$

and so

$$
\begin{aligned}
f(\mathbf{a}+\mathbf{t})-f(\mathbf{a}) & =(\alpha+s)(\alpha+s+\beta+t)-\alpha(\alpha+\beta) \\
& =\alpha s+\alpha t+s \alpha+s^{2}+s \beta+s t \\
& =(2 \alpha+\beta) s+\alpha t+s^{2}+s t .
\end{aligned}
$$

We might guess that the required linear function of s and t is $L(\mathbf{t})=$ $(2 \alpha+\beta) s+\alpha t$ (we have simply omitted any higher powers or products of s and t). To verify the definition first consider

$$
f(\mathbf{a}+\mathbf{t})-f(\mathbf{a})-L(\mathbf{t})=s^{2}+s t
$$

Recall that $|s|,|t| \leq|\mathbf{t}|$ so, by the triangle inequality,

$$
\left|s^{2}+s t\right| \leq|s|^{2}+|s||t| \leq 2|\mathbf{t}|^{2} .
$$

Then

$$
\left|\frac{f(\mathbf{a}+\mathbf{t})-f(\mathbf{a})-L(\mathbf{t})}{|\mathbf{t}|}\right|=\left|\frac{s^{2}+s t}{|\mathbf{t}|}\right| \leq \frac{2|\mathbf{t}|^{2}}{|\mathbf{t}|}=2|\mathbf{t}| \rightarrow 0
$$

as $\mathbf{t} \rightarrow 0$. Hence, by the Sandwich Rule,

$$
\begin{equation*}
\lim _{\mathbf{t} \rightarrow 0} \frac{f(\mathbf{a}+\mathbf{t})-f(\mathbf{a})-L(\mathbf{t})}{|\mathbf{t}|}=0 \tag{1}
\end{equation*}
$$

Thus f is Fréchet differentiable at a with

$$
d f_{\mathbf{a}}(\mathbf{t})=(2 \alpha+\beta) s+\alpha t
$$

Yet a is arbitrary so f is Fréchet differentiable on \mathbb{R}^{2}.
For the second function,

$$
\begin{aligned}
g(\mathbf{a}+\mathbf{t})-g(\mathbf{a}) & =(\beta+t)(\alpha-\beta+s-t)-\beta(\alpha-\beta) \\
& =\beta s-2 \beta t+\alpha t+s t-t^{2}
\end{aligned}
$$

We guess the linear form is $L(\mathbf{t})=\beta s+(\alpha-2 \beta) t$. There are no new ideas involved in showing that the corresponding (1) holds. Thus g is Fréchet differentiable at a with

$$
d g_{\mathbf{a}}(\mathbf{t})=\beta s+(\alpha-2 \beta) t .
$$

Again a is arbitrary so g is Fréchet differentiable on \mathbb{R}^{2}.
b. Since the functions are Fréchet differentiable we have

$$
\begin{aligned}
& d_{\mathbf{v}} f(\mathbf{a})=d f_{\mathbf{a}}(\mathbf{v})=(2 \alpha+\beta) u+\alpha v \\
& d_{\mathbf{v}} g(\mathbf{a})=d g_{\mathbf{a}}(\mathbf{v})=\beta u+(\alpha-2 \beta) v .
\end{aligned}
$$

if $\mathbf{v}=(u, v)^{T}$. With $\mathbf{a}=(1,2)^{T}$ and $\mathbf{v}=(2,-1)^{T} / \sqrt{5}$ we find

$$
\begin{aligned}
& d_{\mathbf{v}} f(\mathbf{a})=4 \times \frac{2}{\sqrt{5}}-\frac{1}{\sqrt{5}}=\frac{7}{\sqrt{5}}, \\
& d_{\mathbf{v}} g(\mathbf{a})=2 \times \frac{2}{\sqrt{5}}-3 \times\left(-\frac{1}{\sqrt{5}}\right)=\frac{7}{\sqrt{5}} .
\end{aligned}
$$

Hopefully these agree with your answers to Question 1 on Sheet 3.
2. i. Define the function $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $h(\mathbf{x})=x y+y z+x z$ where $\mathbf{x}=$ $(x, y, z)^{T}$. Prove by verifying the definition that f is Fréchet differentiable at a general point $\mathbf{a}=(\alpha, \beta, \gamma)^{T} \in \mathbb{R}^{3}$ and find the Fréchet derivative $d h_{\mathbf{a}}$ of h at a.
ii. Use your result to check your answer to Question 3 on Sheet 3 .

Solution With $\mathbf{a}=(\alpha, \beta, \gamma)^{T} \in \mathbb{R}^{3}$ given and $\mathbf{t}=(s, t, u)^{T}$ consider

$$
\begin{aligned}
h(\mathbf{a}+\mathbf{t})-h(\mathbf{a})= & (\alpha+s)(\beta+t)+(\beta+t)(\gamma+u)+(\alpha+s)(\gamma+u) \\
& -\alpha \beta-\beta \gamma-\alpha \gamma \\
= & \alpha t+s \beta+s t+\beta u+t \gamma+t u+\alpha u+s \gamma+s u \\
= & (\beta+\gamma) s+(\alpha+\gamma) t+(\alpha+\beta) u+s t+t u+s u
\end{aligned}
$$

We might guess that the required linear function of s, t and u is

$$
L(\mathbf{t})=(\beta+\gamma) s+(\alpha+\gamma) t+(\alpha+\beta) u
$$

To check the definition first consider

$$
h(\mathbf{a}+\mathbf{t})-h(\mathbf{a})-L(\mathbf{t})=s t+t u+s u .
$$

Recall that $|s|,|t|,|u| \leq|\mathbf{t}|$ so, by the triangle inequality,

$$
|s t+t u+s u| \leq|s||t|+|t||u|+|s||u| \leq 3|\mathbf{t}|^{2} .
$$

Thus

$$
\left|\frac{h(\mathbf{a}+\mathbf{t})-h(\mathbf{a})-L(\mathbf{t})}{|\mathbf{t}|}\right|=\left|\frac{s t+t u+s u}{|\mathbf{t}|}\right| \leq \frac{3|\mathbf{t}|^{2}}{|\mathbf{t}|}=3|\mathbf{t}| \rightarrow 0
$$

as $\mathbf{t} \rightarrow 0$. Hence, by the sandwich rule,

$$
\lim _{\mathbf{t} \rightarrow 0} \frac{h(\mathbf{a}+\mathbf{t})-h(\mathbf{a})-L(\mathbf{t})}{|\mathbf{t}|}=0 .
$$

Thus h is Fréchet differentiable at a with

$$
\begin{equation*}
d h_{\mathbf{a}}(\mathbf{t})=(\beta+\gamma) s+(\alpha+\gamma) t+(\alpha+\beta) u . \tag{2}
\end{equation*}
$$

Yet \mathbf{a} is arbitrary so h is Fréchet differentiable on \mathbb{R}^{2}.
The lesson to be learnt is that there must be an easier way of verifying a function is Fréchet differentiable then finding the derivative.
ii. Question 3 on Sheet 3 asked for the directional derivative of $h(\mathbf{x})=x y+$ $y z+x z$ at $\mathbf{a}=(1,2,3)^{T}$ in the direction of the unit vector $\mathbf{v}=(3,2,1)^{T} / \sqrt{14}$. Now we know that h is Fréchet differentiable we know that

$$
\begin{aligned}
d_{\mathbf{v}} h(\mathbf{a}) & =d h_{\mathbf{a}}(\mathbf{v})=\frac{(2+3) \times 3+(1+3) \times 2+(1+2) \times 1}{\sqrt{14}} \text { by }(2) \\
& =\frac{26}{\sqrt{14}} .
\end{aligned}
$$

Hopefully the same result as found previously.

Fréchet differentiable vector-valued functions.

3. Let $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
\mathbf{f}(\mathbf{x})=\binom{x^{2}-y^{2}}{2 x y}
$$

for $\mathbf{x}=(x, y)^{T} \in \mathbb{R}^{2}$. Prove, by verifying the definition that \mathbf{f} is everywhere Fréchet differentiable and find the Fréchet derivative of \mathbf{f} at a general point $\mathbf{a}=(\alpha, \beta)^{T}$.

Solution With $\mathbf{t}=(s, t)^{T}$ consider

$$
\begin{aligned}
\mathbf{f}(\mathbf{a}+\mathbf{t})-\mathbf{f}(\mathbf{a}) & =\binom{(\alpha+s)^{2}-(\beta+t)^{2}}{2(\alpha+s)(\beta+t)}-\binom{\alpha^{2}-\beta^{2}}{2 \alpha \beta} \\
& =\binom{2 \alpha s+s^{2}-2 \beta t-t^{2}}{2 \alpha t+2 \beta s+2 s t} .
\end{aligned}
$$

Guess that the linear part in s and t is

$$
\mathbf{L}(\mathbf{t})=\binom{2 \alpha s-2 \beta t}{2 \alpha t+2 \beta s}
$$

Consider

$$
\frac{\mathbf{f}(\mathbf{x}+\mathbf{t})-\mathbf{f}(\mathbf{x})-\mathbf{L}(\mathbf{t})}{|\mathbf{t}|}=\frac{1}{|\mathbf{t}|}\binom{s^{2}-t^{2}}{2 s t} .
$$

Recall that in general, $\lim _{\mathbf{x} \rightarrow \mathbf{0}} \mathbf{f}(\mathbf{x})=\mathbf{b}$ if, and only if $\lim _{\mathbf{x} \rightarrow \mathbf{0}} f^{i}(\mathbf{x})=b^{i}$ for all components. So it suffices to prove

$$
\begin{equation*}
\lim _{\mathbf{t} \rightarrow \mathbf{0}} \frac{s^{2}-t^{2}}{|\mathbf{t}|}=0 \quad \text { and } \quad \lim _{\mathbf{t} \rightarrow \mathbf{0}} \frac{2 s t}{|\mathbf{t}|}=0 . \tag{3}
\end{equation*}
$$

Yet both will follow from the Sandwich Rule with the observation that $|s|,|t| \leq|\mathbf{t}|$. So, start with the triangle inequality,

$$
\left|s^{2}-t^{2}\right| \leq|s|^{2}+|t|^{2}=|\mathbf{t}|^{2} \quad \text { along with } \quad|2 s t| \leq 2|\mathbf{t}|^{2} .
$$

Then

$$
\frac{\left|s^{2}-t^{2}\right|}{|\mathbf{t}|} \leq \frac{\left|s^{2}\right|+\left|t^{2}\right|}{|\mathbf{t}|}=|\mathbf{t}| \rightarrow 0 \quad \text { and } \quad \frac{|2 s t|}{|\mathbf{t}|} \leq 2|\mathbf{t}| \rightarrow 0
$$

as $\mathbf{t} \rightarrow \mathbf{0}$. Hence the limits in (3) follow, f is Fréchet differentiable at a and thus everywhere with

$$
\mathbf{d f}_{\mathbf{a}}(\mathbf{t})=\binom{2 \alpha s-2 \beta t}{2 \alpha t+2 \beta s}
$$

4. i. Prove that the scalar-valued function $\mathbf{x} \mapsto x^{2} y$ is everywhere Fréchet differentiable on \mathbb{R}^{2}. In lectures and Problems class this was done for the scalar-valued function $\mathbf{x} \mapsto x y^{2}$, simply copy that method for the second.
ii. Prove that the vector-valued function $\mathbf{f}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, given by

$$
\mathbf{f}(\mathbf{x})=\binom{x y^{2}}{x^{2} y}
$$

is Fréchet differentiable at a general point $\mathbf{a}=(\alpha, \beta)^{T} \in \mathbb{R}^{2}$ and find the Fréchet derivative $d \mathbf{f}_{\mathbf{a}}$ of \mathbf{f} at \mathbf{a}.
ii. Use the result from part i to check your answer to Question 7 on Sheet 3.

Note the difference in wording between this question and the previous one.
Solution Let $\mathbf{a}=(\alpha, \beta)^{T}, \mathbf{t}=(s, t)^{T} \in \mathbb{R}^{2}$. Let $f(\mathbf{x})=x^{2} y$. Then

$$
\begin{aligned}
f(\mathbf{a}+\mathbf{t})-f(\mathbf{a}) & =f\left(\binom{\alpha+s}{\beta+t}\right)-f\left(\binom{\alpha}{\beta}\right) \\
& =(\alpha+s)^{2}(\beta+t)-\alpha^{2} \beta \\
& =\left(\alpha^{2}+2 \alpha s+s^{2}\right)(\beta+t)-\alpha^{2} \beta \\
& =2 \alpha \beta s+\alpha^{2} t+\beta s^{2}+2 \alpha s t+s^{2} t .
\end{aligned}
$$

The 'linear part in s and t ' of this is $2 \alpha \beta s+\alpha^{2} t$, so we guess

$$
d f_{\mathbf{a}}(\mathbf{t})=2 \alpha \beta s+\alpha^{2} t .
$$

To check, consider

$$
\frac{f(\mathbf{a}+\mathbf{t})-f(\mathbf{a})-\left(2 \alpha \beta s+\alpha^{2} t\right)}{|\mathbf{t}|}=\frac{\beta s^{2}+2 \alpha s t+s^{2} t}{|\mathbf{t}|} .
$$

Again, $|s|,|t| \leq|\mathbf{t}|$ and $|\alpha|,|\beta| \leq|\mathbf{a}|$, so by the triangle inequality

$$
\begin{aligned}
\left|\beta s^{2}+2 \alpha s t+s^{2} t\right| & \leq|\beta||s|^{2}+2|\alpha||s||t|+|s|^{2}|t| \\
& \leq 3|\mathbf{a}||\mathbf{t}|^{2}+|\mathbf{t}|^{3} .
\end{aligned}
$$

Therefore

$$
\left|\frac{\beta s^{2}+2 \alpha s t+s^{2} t}{|\mathbf{t}|}\right| \leq 3|\mathbf{a}||\mathbf{t}|+|\mathbf{t}|^{2} \rightarrow 0
$$

as $\mathbf{t} \rightarrow \mathbf{0}$. Hence f is Fréchet differentiable on \mathbb{R}^{2} with

$$
d f_{\mathbf{a}}(\mathbf{t})=2 \alpha \beta s+\alpha^{2} t .
$$

ii. By a proposition in the notes, \mathbf{f} is Fréchet differentiable at a iff each component function is Fréchet differentiable at \mathbf{a}, and further $\left(d \mathbf{f}_{\mathbf{a}}\right)^{i}=d f_{\mathbf{a}}^{i}$ for all i. In this example $f^{1}(\mathbf{x})=x y^{2}$ and from the lectures we know that $d f_{\mathbf{a}}^{1}(\mathbf{t})=\beta^{2} s+2 \alpha \beta t$. Hence

$$
\begin{equation*}
d \mathbf{f}_{\mathbf{a}}(\mathbf{t})=\binom{d f_{\mathbf{a}}^{1}(\mathbf{t})}{d f_{\mathbf{a}}^{2}(\mathbf{t})}=\binom{\beta^{2} s+2 \alpha \beta t}{2 \alpha \beta s+\alpha^{2} t} . \tag{4}
\end{equation*}
$$

iii. Question 7 on Sheet 3 asks for the directional derivative of \mathbf{f} at $\mathbf{a}=(2,1)^{T}$ in the direction of the unit vector $\mathbf{v}=(1,-1)^{T} / \sqrt{2}$. Now we know that \mathbf{f} is Fréchet differentiable we know that

$$
\begin{align*}
d_{\mathbf{v}} \mathbf{f}(\mathbf{a}) & =d \mathbf{f}_{\mathbf{a}}(\mathbf{v})=\frac{1}{\sqrt{2}}\binom{1^{2} \times 1-2 \times 2 \times 1 \times 1}{2 \times 2 \times 1 \times 1-2^{2} \times 1} \tag{4}\\
& =-\frac{3}{\sqrt{2}}\binom{1}{0} .
\end{align*}
$$

Jacobian Matrices and Gradient vectors

5. Write down the general Jacobian matrix in each of the following cases and then evaluate them at the given point.
i. $\quad \mathbf{p}(r, \theta)=(r \cos \theta, r \sin \theta)^{T}$ at the point $(1, \pi)^{T}$,
ii. $\quad g(u, v, w)=u v+5 u^{2} w \quad$ at the point $(2,-3,1)^{T}$,
iii. $\quad \mathbf{r}(t)=(\cos t, \sin t, t)^{T}$, a helix in \mathbb{R}^{3}, at the point $t=3 \pi$.

Solution i.

$$
J \mathbf{p}(r, \theta)=\left(\begin{array}{rr}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right) \quad \text { and } \quad J \mathbf{p}(1, \pi)=\left(\begin{array}{rr}
-1 & 0 \\
0 & -1
\end{array}\right) .
$$

ii.

$$
J g(u, v, w)=\left(\begin{array}{lll}
v+10 u w & u & 5 u^{2}
\end{array}\right) \quad \text { and } \quad J g(2,-3,1)=\left(\begin{array}{lll}
17 & 2 & 20
\end{array}\right) .
$$

iii.

$$
J \mathbf{r}(t)=\left(\begin{array}{c}
-\sin t \\
\cos t \\
1
\end{array}\right) \quad \text { and } \quad J \mathbf{r}(3 \pi)=\left(\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right) .
$$

6. By returning to Questions 1 and 2 find the gradient vectors of
i. $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \longmapsto x(x+y)$ and
ii. $g: \mathbb{R}^{2} \rightarrow \mathbb{R}, \mathbf{x} \longmapsto y(x-y)$
iii. $h: \mathbb{R}^{3} \rightarrow \mathbb{R}$ by $\mathbf{x} \longmapsto x y+y z+x z$ where $\mathbf{x}=(x, y, z)^{T}$,
without using partial differentiation. Justify your argument.
Solution i. From Question 1 we have that f is everywhere Fréchet differentiable which is necessary for us to say that, for all $\mathbf{a}=(\alpha, \beta)^{T} \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
\nabla f(\mathbf{a}) \bullet \mathbf{t} & =d f_{\mathbf{a}}(\mathbf{t}) \\
& =(2 \alpha+\beta) s+\alpha t \quad \text { by Question } 1 \\
& =(2 \alpha+\beta, \alpha)^{T} \bullet \mathbf{t} .
\end{aligned}
$$

True for all $\mathbf{t} \in \mathbb{R}^{2}$ means $\nabla f(\mathbf{a})=(2 \alpha+\beta, \alpha)^{T}$, i.e. $\nabla f(\mathbf{x})=(2 x+y, x)^{T}$ for $\mathbf{x}=(x, y)^{T}$.
ii. From Question 1 we have that g is everywhere Fréchet differentiable which is necessary for us to say that, for all $\mathbf{a}=(\alpha, \beta)^{T} \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
\nabla g(\mathbf{a}) \bullet \mathbf{t} & =d g_{\mathbf{a}}(\mathbf{t}) \\
& =\beta s+(\alpha-2 \beta) t \quad \text { by Question } 1 \\
& =(\beta, \alpha-2 \beta)^{T} \bullet \mathbf{t} .
\end{aligned}
$$

True for all $\mathbf{t} \in \mathbb{R}^{2}$ means $\nabla g(\mathbf{a})=(\beta, \alpha-2 \beta)^{T}$, i.e. $\nabla g(\mathbf{x})=(y, x-2 y)^{T}$ for $\mathbf{x}=(x, y)^{T}$.
iii. From Question 2 we have that h is everywhere Fréchet differentiable which is necessary for us to say that, for all $\mathbf{a}=(\alpha, \beta, \gamma)^{T} \in \mathbb{R}^{3}$, we have

$$
\begin{aligned}
\nabla h(\mathbf{a}) \bullet \mathbf{t} & =d h_{\mathbf{a}}(\mathbf{t}) \\
& =(\beta+\gamma) s+(\alpha+\gamma) t+(\alpha+\beta) u \text { by Question } 2 \\
& =(\beta+\gamma, \alpha+\gamma, \alpha+\beta)^{T} \bullet \mathbf{t} .
\end{aligned}
$$

True for all $\mathbf{t} \in \mathbb{R}^{3}$ means $\nabla h(\mathbf{a})=(\beta+\gamma, \alpha+\gamma, \alpha+\beta)^{T}$, i.e. $\nabla h(\mathbf{x})=$ $(y+z, x+z, x+y)^{T}$ for $\mathbf{x}=(x, y, z)^{T}$.
7. By returning to Question 3 and 4 find the Jacobian matrices of \mathbf{f}, \mathbf{g} : $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, given by

$$
\mathbf{f}(\mathbf{x})=\binom{x^{2}-y^{2}}{2 x y}, \text { and } \mathbf{g}(\mathbf{x})=\binom{x y^{2}}{x^{2} y}
$$

without using partial differentiation. Justify your argument.
Solution From Question 3 we have that \mathbf{f} is everywhere Fréchet differentiable which is the required justification for us to say that, for all $\mathbf{a}=(\alpha, \beta)^{T} \in \mathbb{R}^{2}$, we have

$$
\begin{aligned}
J \mathbf{f}(\mathbf{a}) \mathbf{t} & =d \mathbf{f}_{\mathbf{a}}(\mathbf{t})=\binom{2 \alpha s-2 \beta t}{2 \alpha t+2 \beta s} \text { by Question 3 } \\
& =\left(\begin{array}{rr}
2 \alpha & -2 \beta \\
2 \beta & 2 \alpha
\end{array}\right)\binom{s}{t}=\left(\begin{array}{rr}
2 \alpha & -2 \beta \\
2 \beta & 2 \alpha
\end{array}\right) \mathbf{t} .
\end{aligned}
$$

True for all $\mathbf{t} \in \mathbb{R}^{2}$ means

$$
J f(\mathbf{a})=\left(\begin{array}{rr}
2 \alpha & -2 \beta \\
2 \beta & 2 \alpha
\end{array}\right) \text {, i.e. } J \mathbf{f}(\mathbf{x})=\left(\begin{array}{rr}
2 x & -2 y \\
2 y & 2 x
\end{array}\right)
$$

for $\mathbf{x}=(x, y)^{T}$.
From Question 4 we have that \mathbf{g} is everywhere Fréchet differentiable and so, for all $\mathbf{a}=(\alpha, \beta)^{T} \in \mathbb{R}^{2}$, we have

$$
J \mathbf{g}(\mathbf{a}) \mathbf{t}=d \mathbf{g}_{\mathbf{a}}(\mathbf{t})=\binom{\beta^{2} s+2 \alpha \beta t}{2 \alpha \beta s+\alpha^{2} t}=\left(\begin{array}{cc}
\beta^{2} & 2 \alpha \beta \\
2 \alpha \beta & \alpha^{2}
\end{array}\right) \mathbf{t} .
$$

True for all $\mathbf{t} \in \mathbb{R}^{2}$ means

$$
J \mathbf{g}(\mathbf{a})=\left(\begin{array}{cc}
\beta^{2} & 2 \alpha \beta \\
2 \alpha \beta & \alpha^{2}
\end{array}\right) \text {, i.e. } J \mathbf{g}(\mathbf{x})=\left(\begin{array}{cc}
2 y^{2} & 2 x y \\
2 x y & 2 x^{2}
\end{array}\right)
$$

for $\mathbf{x}=(x, y)^{T}$.

Not Fréchet differentiable

8. Recall the important result for scalar-valued functions

$$
f \text { Fréchet differentiable at } \mathbf{a} \Longrightarrow \forall \text { unit } \mathbf{v}, d_{\mathbf{v}} f(\mathbf{a}) \text { exists and } d_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \bullet \mathbf{v} .
$$

The contrapositive of this is the useful

$$
\begin{align*}
\exists \text { unit } \mathbf{v} & \text { : either } d_{\mathbf{v}} f(\mathbf{a}) \text { does not exist or } d_{\mathbf{v}} f(\mathbf{a}) \neq \nabla f(\mathbf{a}) \bullet \mathbf{v} \\
& \Longrightarrow f \text { is not Fréchet differentiable at } \mathbf{a} \tag{5}
\end{align*}
$$

Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(\mathbf{x})=\frac{x^{2} y}{x^{2}+y^{2}} \quad \text { if } \mathbf{x} \neq 0, \quad f(\mathbf{0})=0
$$

Prove that f is not Fréchet differentiable at $\mathbf{0}$.
This function was seen in Question 11iii Sheet 1 where it was shown that $\lim _{\mathbf{x} \rightarrow \mathbf{0}} f(\mathbf{x})=0$. Since $f(\mathbf{0})=0$ this means f is continuous at $\mathbf{0}$. So we have an example illustrating the important
f continuous at $\mathbf{a} \nRightarrow f$ is Fréchet differentiable at \mathbf{a}.
But f was also seen in Question 14 on Sheet 3 where it was shown that the directional derivatives $d_{\mathbf{v}} f(\mathbf{0})$ exist for all unit \mathbf{v}. So we have an example of

$$
\forall \text { unit } \mathbf{v}, d_{\mathbf{v}} f(\mathbf{a}) \text { exists } \nRightarrow f \text { is Fréchet differentiable at } \mathbf{a} \text {. }
$$

Solution By (5) it suffices to find a $\mathbf{v}: d_{\mathbf{v}} f(\mathbf{0}) \neq \nabla f(\mathbf{0}) \bullet \mathbf{v}$.
From Question 14ii on Sheet 3 we have

$$
\frac{\partial f}{\partial x}(\mathbf{0})=\frac{\partial f}{\partial y}(\mathbf{0})=0
$$

and so $\nabla f(\mathbf{0})=\mathbf{0}$ and thus $\nabla f(\mathbf{0}) \bullet \mathbf{v}=0$ for all \mathbf{v}.
Yet from Question 14iii on Sheet 3 we have $d_{\mathbf{v}} f(\mathbf{0})=f(\mathbf{v})$ so we need only choose a $\mathbf{v}: f(\mathbf{v}) \neq 0$. For example, $\mathbf{v}=(1,1)^{T} / \sqrt{2}$.

In Question 8 we used that fact that there exists a unit \mathbf{v} for which $d_{\mathbf{v}} f(\mathbf{0}) \neq \nabla f(\mathbf{0}) \bullet \mathbf{v}$ to deduce that f is not Fréchet differentiable at $\mathbf{0}$. In the following question we find an example of a function f for which $d_{\mathbf{v}} f(\mathbf{0})=$ $\nabla f(\mathbf{0}) \bullet \mathbf{v}$ for all unit \mathbf{v} and yet f is still not Fréchet differentiable at $\mathbf{0}$.
9. (Tricky) Define the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(\mathbf{x})=\frac{x y^{2} \sqrt{x^{2}+y^{2}}}{x^{2}+y^{4}} \text { if } \mathbf{x} \neq \mathbf{0} ; \quad f(\mathbf{0})=0
$$

i. Prove that f is continuous at $\mathbf{0}$.

Hint Note that $x \leq \sqrt{x^{2}+y^{4}}$, and similarly for y^{2}.
ii. Prove from first principles that the directional derivative exists in all directions, and further, satisfies $d_{\mathbf{v}} f(\mathbf{0})=\nabla f(\mathbf{0}) \bullet \mathbf{v}$ for all unit vectors $\mathbf{v} \in \mathbb{R}^{2}$.
iii. Prove that, nevertheless, f is not Fréchet differentiable at $\mathbf{0}$.

This example illustrates two important points

$$
\text { continuous } \nRightarrow \text { Fréchet differentiable. }
$$

and
\forall unit $\mathbf{v}, d_{\mathbf{v}} f(\mathbf{a})$ exists and $d_{\mathbf{v}} f(\mathbf{a})=\nabla f(\mathbf{a}) \bullet \mathbf{v} \Rightarrow \not \quad$ differentiable.

Solution i. To show f is continuous at $\mathbf{0}$ we start by bounding $|f(\mathbf{x})-f(\mathbf{0})|=$ $|f(\mathbf{x})|$ from above. By the hint given

$$
|x| \leq \sqrt{x^{2}+y^{4}} \quad \text { and } \quad\left|y^{2}\right| \leq \sqrt{x^{2}+y^{4}}
$$

(This is probably the hardest step.) Thus

$$
|f(\mathbf{x})| \leq \sqrt{x^{2}+y^{2}}=|\mathbf{x}| \rightarrow 0
$$

as $\mathbf{x} \rightarrow 0$. Hence, by the Sandwich Rule, $\lim _{\mathbf{x} \rightarrow \mathbf{0}} f(\mathbf{x})=0=f(\mathbf{0})$, therefore f is continuous at $\mathbf{0}$.
Alternative proof Use the so-called AM-GM inequality; that the arithmetic mean is greater than the geometric mean. So if $a, b>0$ then $\sqrt{a b} \leq$ $(a+b) / 2$ (follows from $\left.(\sqrt{a}-\sqrt{b})^{2} \geq 0\right)$. Apply this with $a=x^{2}$ and $b=y^{4}$ to get $|x| y^{2}<\left(x^{2}+y^{4}\right) / 2$. This gives the stronger result $|f(\mathbf{x})|<|\mathbf{x}| / 2$.
ii. To find the directional derivatives at $\mathbf{0}$ assume that the unit vector \mathbf{v} is given. Let $\mathbf{v}=(h, k)^{T}$, so $\sqrt{h^{2}+k^{2}}=1$. Then we have two cases.

The first case is $h \neq 0$, when

$$
f(\mathbf{0}+t \mathbf{v})=\frac{t h(t k)^{2}}{(t h)^{2}+(t k)^{4}} \sqrt{(t h)^{2}+(t k)^{2}}=\frac{t^{2} h k^{2}}{h^{2}+t^{2} k^{4}}
$$

Thus

$$
\begin{equation*}
\frac{f(\mathbf{0}+t \mathbf{v})-f(\mathbf{0})}{t}=t \frac{h k^{2}}{h^{2}+t^{2} k^{4}} \rightarrow 0 \tag{6}
\end{equation*}
$$

as $t \rightarrow 0$.
In the second case $h=0$ when $f(\mathbf{0}+t \mathbf{v})=0$ for all t and we get the same limit in (6).

Therefore in all cases the limit in (6) exists, so f has directional derivatives at $\mathbf{0}$ with $d_{\mathbf{v}} f(\mathbf{0})=0$ for all unit vectors \mathbf{v}.

Note for the next part that (6) means, in particular, that $d_{1} f(\mathbf{0})=d_{\mathbf{e}_{1}} f(\mathbf{0})=$ 0 and $d_{2} f(\mathbf{0})=d_{\mathbf{e}_{2}} f(\mathbf{0})=0$. Thus the gradient vector at $\mathbf{0}$ is

$$
\nabla f(\mathbf{0})=\binom{d_{1} f(\mathbf{0})}{d_{2} f(\mathbf{0})}=\binom{0}{0}=\mathbf{0}
$$

iii. To prove that f is not Fréchet differentiable at $\mathbf{0}$ we assume, for a contradiction, that f is Fréchet differentiable at $\mathbf{0}$. This means that the linear function $d f_{\mathbf{0}}$ exists. But further, by a result in the notes $d f_{\mathbf{0}}(\mathbf{v})=\nabla f(\mathbf{0}) \bullet \mathbf{v}$ for all vectors \mathbf{v}. Yet we have $\nabla f(\mathbf{0})=\mathbf{0}$ which thus means that $d f_{\mathbf{0}}(\mathbf{v})=0$ for all $\mathbf{v} \in \mathbb{R}^{2}$. Hence $d f_{\mathbf{0}}=0: \mathbb{R}^{2} \rightarrow \mathbb{R}$ (i.e. it is the map that takes all vectors of \mathbb{R}^{2} to 0 .)

Now look at the definition of $d f_{0}$ as the linear map which satisfies

$$
\begin{equation*}
0=\lim _{\mathbf{t} \rightarrow \mathbf{0}} \frac{f(\mathbf{0}+\mathbf{t})-f(\mathbf{0})-d f_{\mathbf{0}}(\mathbf{t})}{|\mathbf{t}|}=\lim _{\mathbf{t} \rightarrow \mathbf{0}} \frac{f(\mathbf{t})}{|\mathbf{t}|} \tag{7}
\end{equation*}
$$

since $f(\mathbf{0})=0$ and $d f_{\mathbf{0}}(\mathbf{t})=0$. The definition of f may have looked complicated but it could have been written as

$$
f(\mathbf{x})=\frac{x y^{2}|\mathbf{x}|}{x^{2}+y^{4}}, \quad \text { i.e. } \quad \frac{f(\mathbf{x})}{|\mathbf{x}|}=\frac{x y^{2}}{x^{2}+y^{4}} .
$$

Then (7) is saying that

$$
\begin{equation*}
0=\lim _{\mathbf{t} \rightarrow \mathbf{0}} \frac{s t^{2}}{s^{2}+t^{4}} \tag{8}
\end{equation*}
$$

where $\mathbf{t}=(s, t)^{T}$. Yet Question 11iv, Sheet 1 , showed this is false. As a recap of that earlier question, if (8) were true we would get the same value, 0 , along whatever path we approached the origin. If we choose the path

$$
\binom{s}{t}=\binom{\ell^{2}}{\ell}
$$

then

$$
0=\lim _{\mathbf{t} \rightarrow \mathbf{0}} \frac{s t^{2}}{s^{2}+t^{4}}=\lim _{\ell \rightarrow 0} \frac{\ell^{4}}{\ell^{4}+\ell^{4}}=\frac{1}{2}
$$

Contradiction.
Aside You can see how this example was constructed. I took a bounded function not continuous at $\mathbf{0}$, called $g(\mathbf{x})$ say. I then defined $f(\mathbf{x})=g(\mathbf{x})|\mathbf{x}|$. Note that $f(\mathbf{0})=0$ and $f(\mathbf{0}+t \mathbf{v})=g(t \mathbf{v})|t|$ so $(f(\mathbf{0}+t \mathbf{v})-f(\mathbf{0})) / t=$ $g(t \mathbf{v})|t| / t$. Thus I also demand that $\lim _{t \rightarrow 0} g(t \mathbf{v})=0$ for all \mathbf{v}. So I had to look through our collection of functions that had the same directional limit at $\mathbf{0}$ in all directions but with different limits along two different paths to $\mathbf{0}$.

Solutions to Additional Questions 4

10. Product Rule for Gradient vectors Assume for $f, g: U \rightarrow \mathbb{R}, U \subseteq \mathbb{R}^{n}$ that the gradient vectors $\nabla f(\mathbf{a})$ and $\nabla g(\mathbf{a})$ exist at $\mathbf{a} \in U$. Prove that $\nabla(f g)(\mathbf{a})$ exists and satisfies

$$
\nabla(f g)(\mathbf{a})=f(\mathbf{a}) \nabla g(\mathbf{a})+g(\mathbf{a}) \nabla f(\mathbf{a})
$$

Solution $\nabla f(\mathbf{a})$ and $\nabla g(\mathbf{a})$ exist iff $d_{i} f(\mathbf{a})$ and $d_{i} g(\mathbf{a})$ exist for all $1 \leq i \leq n$, iff $d_{\mathbf{e}_{i}} f(\mathbf{a})$ and $d_{\mathbf{e}_{i}} g(\mathbf{a})$ exist for all $1 \leq i \leq n$. This is sufficient, by Question 16 on Sheet 3, to deduce that $d_{\mathbf{e}_{i}}(f g)(\mathbf{a})$ exists and

$$
d_{i}(f g)(\mathbf{a})=f(\mathbf{a}) d_{i} g(\mathbf{a})+g(\mathbf{a}) d_{i} f(\mathbf{a}),
$$

for all $1 \leq i \leq n$. Yet this is simply the equality of coordinates in $\nabla(f g)(\mathbf{a})=$ $f(\mathbf{a}) \nabla g(\mathbf{a})+g(\mathbf{a}) \nabla f(\mathbf{a})$.
11. Prove that

$$
f(\mathbf{x})=\frac{x y}{\sqrt{x^{2}+y^{2}}}, \mathbf{x}=(x, y)^{T} \neq \mathbf{0}, \quad f(\mathbf{0})=0
$$

is continuous but not Fréchet differentiable at $\mathbf{0}$.
Solution Start by noting that

$$
f(\mathbf{x})=\frac{x y}{|\mathbf{x}|} \quad \text { so } \quad|f(\mathbf{x})|=\frac{|x||y|}{|\mathbf{x}|} \leq \frac{|\mathbf{x}||\mathbf{x}|}{|\mathbf{x}|}=|\mathbf{x}| \rightarrow 0
$$

as $\mathbf{x} \rightarrow \mathbf{0}$. Thus, by the Sandwich Rule, $\lim _{\mathbf{x} \rightarrow \mathbf{0}} f(\mathbf{x})=0=f(\mathbf{0})$ and so f is continuous at $\mathbf{0}$.

Assume for contradiction that f is Fréchet differentiable at $\mathbf{0}$. Then $d f_{\mathbf{0}}$ exists and satisfies $d f_{\mathbf{0}}(\mathbf{v})=d_{\mathbf{v}} f(\mathbf{0})$ for all unit \mathbf{v}. It is not hard to check from the definition that $d_{\mathbf{v}} f(\mathbf{0})=0$ for all unit \mathbf{v}. Thus $d f_{\mathbf{0}}=0$. Within the definition of Fréchet differentiable this gives

$$
0=\lim _{\mathbf{t} \rightarrow \mathbf{0}} \frac{f(\mathbf{t})-f(\mathbf{0})-d f_{\mathbf{0}}(\mathbf{t})}{|\mathbf{t}|}=\lim _{\mathbf{t} \rightarrow \mathbf{0}} \frac{f(\mathbf{t})}{|\mathbf{t}|}=\lim _{\mathbf{t} \rightarrow \mathbf{0}} \frac{s t}{s^{2}+t^{2}},
$$

where $t=(s, t)^{T}$. This is the required contradiction since the limit on the right does not exist (Question 11ii, Sheet 1.)

